BRANCHES OF ZOOLOGY
Journal of Agricultural and biological research an open access rapid peer reviewed journal in the field of agricultural research. It is a bimonthly journal. Below we discuss about.
Although the study of animal life is ancient, its scientific incarnation is relatively modern. This mirrors the transition from natural history to biology at the start of the 19th century. Since Hunter and Cuvier, comparative anatomical study has been associated with morphography, shaping the modern areas of zoological investigation: anatomy, physiology, histology, embryology, teratology and ethology. Modern zoology first arose in German and British universities. In Britain, Thomas Henry Huxley was a prominent figure. His ideas were centered on the morphology of animals. Many consider him the greatest comparative anatomist of the latter half of the 19th century. Similar to Hunter, his courses were composed of lectures and laboratory practical classes in contrast to the previous format of lectures only.
Vertebrate and invertebrate zoology:
Vertebrate zoology is the biological discipline that consists of the study of vertebrate animals that is animals with a backbone, such as fish, amphibians, reptiles, birds and mammals. The various taxonomically oriented disciplines such as mammalogy, biological anthropology, herpetology, ornithology, and ichthyology identify and classify species and study the structures and mechanisms specific to those groups. The rest of the animal kingdom is dealt with by invertebrate zoology, a vast and very diverse group of animals that includes sponges, echinoderms, tunicates, worms, molluscs, arthropods and many other phyla, but single-celled organisms or protests are not usually included.
Structural zoology:
Cell biology studies the structural and physiological properties of cells, including their behavior, interactions, and environment. This is done on both the microscopic and molecular levels, for single-celled organisms such as bacteria as well as the specialized cells in multicellular organisms such as humans. Understanding the structure and function of cells is fundamental to all of the biological sciences. The similarities and differences between cell types are particularly relevant to molecular biology.
Anatomy considers the forms of macroscopic structures such as organs and organ systems. It focuses on how organs and organ systems work together in the bodies of humans and animals, in addition to how they work independently. Anatomy and cell biology are two studies that are closely related, and can be categorized under "structural" studies. Comparative anatomy is the study of similarities and differences in the anatomy of different groups. It is closely related to evolutionary biology and phylogeny (the evolution of species).
Physiology:
Physiology studies the mechanical, physical, and biochemical processes of living organisms by attempting to understand how all of the structures function as a whole. The theme of "structure to function" is central to biology. Physiological studies have traditionally been divided into plant physiology and animal physiology, but some principles of physiology are universal, no matter what particular organism is being studied. For example, what is learned about the physiology of yeast cells can also apply to human cells? The field of animal physiology extends the tools and methods of human physiology to non-human species. Physiology studies how for example nervous, immune, endocrine, respiratory, and circulatory systems, function and interacts.
Developmental biology:
Developmental biology is the study of the processes by which animals and plants reproduce and grow. The discipline includes the study of embryonic development, cellular differentiation, regeneration, asexual reproduction, metamorphosis, and the growth and differentiation of stem cells in the adult organism. Development of both animals and plants is further considered in the articles on evolution, population genetics, heredity, genetic variability, Mendelian inheritance, and reproduction.
Evolutionary biology:
Evolutionary biology is the subfield of biology that studies the evolutionary processes (natural selection, common descent, and speciation) that produced the diversity of life on Earth. Evolutionary research is concerned with the origin and descent of species, as well as their change over time, and includes scientists from many taxonomically oriented disciplines. For example, it generally involves scientists who have special training in particular organisms such as mammalogy, ornithology, herpetology, or entomology, but use those organisms as systems to answer general questions about evolution.
Evolutionary biology is partly based on paleontology, which uses the fossil record to answer questions about the mode and tempo of evolution, and partly on the developments in areas such as population genetics and evolutionary theory. Following the development of DNA fingerprinting techniques in the late 20th century, the application of these techniques in zoology has increased the understanding of animal populations. In the 1980s, developmental biology re-entered evolutionary biology from its initial exclusion from the modern synthesis through the study of evolutionary developmental biology. Related fields often considered part of evolutionary biology are phylogenetic, systematics, and taxonomy.
Submit manuscript at https://www.scholarscentral.org/editorial-tracking/index.php or
Send as an e-mail attachment to the Editorial Office at agri@scholarlypub.com
Media contact:
Larry Taylor,
Managing Editor
Journal of Agricultural and Biological Research
Mail ID: biologyres@peerjournal.org
Whatsapp no: 1-920-541-6085